56,929 research outputs found

    Accelerating corrosion in a laboratory set-up for corrosion-fatigue of offshore steels

    Get PDF
    Corrosion-fatigue is a dangerous failure mechanism that is not yet fully understood. Structures subjected to corrosion-fatigue are over conservative in design, which is economically unfavourable. To counter this, representative laboratory experiments simulating the corrosion-fatigue conditions of an offshore structure should be performed. Lab testing is, for obvious reasons, performed at frequencies much higher than these of wave and wind actions. However, this means that corrosion needs to be accelerated in the same manner. In this work two different ways to accelerate corrosion were selected, namely temperature and oxygen content adaptation. S-N curves were determined in different test conditions in order to evaluate the damage evolution. It has been found that high temperatures and high levels of oxygen content will result in earlier failure. The fracture surfaces are somewhat different than fracture surfaces obtained due to fatigue in air. More crack initiation sites can be observed and the fracture surface is generally rougher due to corrosion

    Testing methodologies for corrosion fatigue

    Get PDF
    Offshore constructions are subjected to cyclic loading conditions. This situation is combined with the corrosive nature of the surrounding environment. It is of actual concern whether the combined effect is more damaging or not than the superposition of each effect independently. This literature review first introduces the reader to corrosion fatigue. Thereafter a critical comparison of some typical lab-scale fatigue corrosion test setups is given. Special emphasis is devoted to the instrumentation of the setup. This is followed by a design criteria summary which will be used to design a new corrosion fatigue test set-up for evaluating the fatigue properties of steel components in sea water environment

    Fatigue crack initiation and growth on a steel in the very high cycle regime with sea water corrosion

    Get PDF
    The authors acknowledge Arts et MĂ©tiers ParisTech and Foundation Arts et MĂ©tiers for the financial support of P.C. Paris’ stay at LAMEFIP. They acknowledge Vicinay Cadenas S.A. for its financial support, and both the PCP France-Mexique and the CONACYT for their financial support too.This paper is devoted to the effect of corrosion on the gigacycle fatigue strength of a martensitic–bainitic hot rolled steel used for manufacturing offshore mooring chains for petroleum platforms. Smooth specimens were tested under fully reversed tension between 1E6 and 1E10 cycles in three testing conditions and environments: (i) in air, (ii) in air after precorrosion and (iii) in air under real time artificial sea water flow. The fatigue strength at greater than 108 cycles is reduced by a factor more than five compared with non-corroded specimens. Fatigue cracks initiate at corrosion pits due to pre-corrosion, if any, or pits resulting from corrosion in real time during the cyclic loading. It is shown that under sea water flow, the fatigue life in the gigacycle regime is mainly governed by the corrosion process. Furthermore, the calculation of the mode I stress intensity factor at hemispherical surface defects (pits) combined with the Paris–Hertzberg–Mc Clintock crack growth rate model shows that fatigue crack initiation regime represents most of the fatigue life.PCP France Mexique, Conacyt, Arts et MĂ©tiers ParisTech (professeur invitĂ© Paul C Paris

    Corrosion fatigue of high strength fastener materials in seawater

    Get PDF
    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure

    The growth of small corrosion fatigue cracks in alloy 2024

    Get PDF
    The corrosion fatigue crack growth characteristics of small surface and corner cracks in aluminum alloy 2024 is established. The damaging effect of salt water on the early stages of small crack growth is characterized by crack initiation at constituent particle pits, intergranular microcracking for a less than 100 micrometers, and transgranular small crack growth for a micrometer. In aqueous 1 percent NaCl and at a constant anodic potential of -700 mV(sub SCE), small cracks exhibit a factor of three increase in fatigue crack growth rates compared to laboratory air. Small cracks exhibit accelerated corrosion fatigue crack growth rates at low levels of delta-K (less than 1 MPa square root of m) below long crack delta-K (sub th). When exposed to Paris regime levels of crack tip stress intensity, small corrosion fatigue cracks exhibit growth rates similar to that observed for long cracks. Results suggest that crack closure effects influence the corrosion fatigue crack growth rates of small cracks (a less than or equal to 100 micrometers). This is evidenced by similar small and long crack growth behavior at various levels of R. Contrary to the corrosion fatigue characteristics of small cracks in high strength steels, no pronounced chemical crack length effect is observed for Al by 2024 exposed to salt water

    Corrosion inhibitors for water-base slurry in multiblade sawing

    Get PDF
    The use of a water-base slurry instead of the standard PC oil vehicle was proposed for multiblade sawing (MBS) silicon wafering technology. Potential cost savings were considerable; however, significant failures of high-carbon steel blades were observed in limited tests using a water-based slurry during silicon wafering. Failures were attributed to stress corrosion. A specially designed fatigue test of 1095 steel blades in distilled water with various corrosion inhibitor solutions was used to determine the feasibility of using corrosion inhibitors in water-base MBS wafering. Fatigue tests indicate that several corrosion inhibitors have significant potential for use in a water-base MBS operation. Blade samples tested in these specific corrosion-inhibitor solutions exhibited considerably greater lifetime than those blades tested in PC oil

    Etude des mĂ©canismes d'interaction, au cours du procĂ©dĂ© d'emboutissage Ă  chaud, entre les surces atmosphĂ©riques d'hydrogĂšne et les aciers Ă  haute rĂ©sistance revĂȘtus d'Al-Si

    Get PDF
    Dans l’industrie automobile, le dĂ©fi permanent d’allĂšgement en vue de diminuer la consommation de carburant est profitable tant au niveau Ă©conomique qu’écologique. Pour permettre cette diminution de masse sans compromettre pour autant la sĂ©curitĂ© des passagers, il est donc essentiel de dĂ©velopper des nuances d’aciers toujours plus rĂ©sistantes. NĂ©anmoins, ces aciers doivent Ă©galement garder une certaine ductilitĂ© nĂ©cessaire Ă  leur mise en forme, mais aussi fondamentale pour la sĂ©curitĂ© des passagers puisque ces piĂšces doivent pouvoir dans une certaine mesure absorber l’énergie en cas de crash ou d’intrusion. Pour rĂ©pondre Ă  cette demande, une solution en plein essor concerne l’emboutissage Ă  chaud d’aciers au bore (tel l’USIBOR1500P© commercialisĂ© par ArcelorMittal). Ce procĂ©dĂ© consiste Ă  austĂ©nitiser l’acier puis Ă  le placer dans une presse, permettant une mise en forme facile et prĂ©cise ainsi qu’une trempe menant Ă  une microstructure martensitique de trĂšs haute rĂ©sistance. De plus, ces aciers pour emboutissage Ă  chaud sont souvent revĂȘtus d’un alliage Al-Si (AluSi – 90% Al, 10% Si) afin d’effectuer ce procĂ©dĂ© sous atmosphĂšre non-contrĂŽlĂ©e en Ă©vitant l’oxydation pendant le traitement thermique et en assurant une bonne rĂ©sistance Ă  la corrosion perforante. NĂ©anmoins, cette haute rĂ©sistance peut ĂȘtre dĂ©faillante suite Ă  une fragilisation du matĂ©riau par l’hydrogĂšne atmosphĂ©rique. En effet, si ce phĂ©nomĂšne de fragilisation est connu depuis longtemps dans de nombreux autres domaines (nuclĂ©aire, soudage, 
), il devient de plus en plus critique lorsque la rĂ©sistance intrinsĂšque de l’acier augmente. La quantitĂ© tolĂ©rable d’hydrogĂšne dans l’acier doit alors ĂȘtre maintenue Ă  un niveau toujours plus faible. Le comportement particulier du revĂȘtement Al-Si complique encore la problĂ©matique de ces aciers emboutis Ă  chaud : il prĂ©sente la particularitĂ© d’ĂȘtre permĂ©able Ă  l’hydrogĂšne Ă  haute tempĂ©rature, et de ne plus l’ĂȘtre Ă  tempĂ©rature ambiante. L’hydrogĂšne peut donc pĂ©nĂ©trer dans la microstructure mais il y reste bloquĂ© Ă  l’ambiante. Dans ce contexte, le premier objectif consistera Ă  Ă©tudier et comprendre les mĂ©canismes rĂ©gissant, lors du traitement thermo-mĂ©canique d’emboutissage Ă  chaud, les interactions entre un acier Ă  haute rĂ©sistance revĂȘtu d’Al-Si et les sources atmosphĂ©riques d’hydrogĂšne (hydrogĂšne molĂ©culaire ou vapeur d’eau). D’autre part, le second objectif consistera Ă  trouver une solution (revĂȘtement additionnel ou introduction de piĂšges Ă  hydrogĂšne) permettant de rĂ©duire la quantitĂ© d’hydrogĂšne entrant dans l’acier au cours de sa mise en forme Ă  chaud. Afin de comprendre les mĂ©canismes d’entrĂ©e de l’hydrogĂšne dans le matĂ©riau, diffĂ©rents sous-systĂšmes seront considĂ©rĂ©s, du point de vue des sources d’hydrogĂšne atmosphĂ©rique et de celui des matĂ©riaux interagissant avec ces sources. Tout d’abord, les sources d’hydrogĂšne sont d’une part la vapeur d’eau (source active dans le procĂ©dĂ© industriel) et le dihydrogĂšne (pour comparaison). La vapeur d’eau deuterĂ©e sera Ă©galement utilisĂ©e afin d’assurer une atmosphĂšre contrĂŽlĂ©e en Ă©vitant le problĂšme de dissociation de l’eau en dihydrogĂšne dans le four. Ensuite, plusieurs sous-systĂšmes seront considĂ©rĂ©s pour l’acier au bore revĂȘtu. En effet, lors du traitement thermo-mĂ©canique, le revĂȘtement en contact avec la source d’hydrogĂšne Ă©volue. À tempĂ©rature ambiante, le revĂȘtement initial est un alliage Al-Si solide ayant faiblement rĂ©agi avec le fer lors de son dĂ©pĂŽt. Lorsque la tempĂ©rature croĂźt, ce revĂȘtement repasse d’abord par la phase liquide puis forme des intermĂ©talliques Al-Fe-Si. À ces trois sous-systĂšmes s’ajoute Ă©galement l’acier nu, point de comparaison par rapport Ă  l’acier revĂȘtu. Pour ce faire, les premiĂšres expĂ©riences concernent des chargements gazeux sous atmosphĂšres contrĂŽlĂ©es d’un acier nu. Des analyses de dĂ©sorption thermique sont ensuite rĂ©alisĂ©es. Elles consistent Ă  envoyer un flux de diazote Ă  tempĂ©rature croissante dans une chambre contenant le matĂ©riau-cible. L’hydrogĂšne contenu dans le matĂ©riau est alors emportĂ© par le diazote vers un spectromĂštre de masse. Des informations sur la quantitĂ© d’hydrogĂšne dissous sont ainsi obtenues et comparĂ©es pour les diffĂ©rentes sources d’hydrogĂšne atmosphĂ©rique, diffĂ©rents points de rosĂ©e, ainsi que diffĂ©rents temps de chargement gazeux

    Corrosion-fatigue lifetime of Aluminium–Copper–Lithium alloy 2050 in chloride solution

    Get PDF
    The fatigue behaviour of Aluminium–Copper–Lithium 2050 alloy under two metallurgical states (T34 and T84) was studied in air for healthy and pre-corroded samples in a 0.7 NaCl solution. The results were compared to those obtained during fatigue–corrosion tests performed in a similar chloride medium. Preliminary corrosion tests demonstrated that the T34 metallurgical state was susceptible to intergranular corrosion, while the T84 metallurgical state was susceptible to intragranular corrosion. Fatigue life tests in air on pre-corroded samples revealed a significant decrease in fatigue life related to the presence of corrosion defects before the cyclic solicitation. A strong effect of the first minutes of immersion in corrosive media was evidenced on fatigue life behaviour. The fatigue–corrosion tests revealed that the T34 metallurgical state was more affected by fatigue–corrosion in terms of fatigue life than the T84 metallurgical state. This observation can be explained by the increased propagation of intergranular corrosion enhanced by the cyclic solicitation

    An evaluation method for corrosion fatigue life of steel structure considering mechanical factors

    Get PDF
    Steel structures in corrosive environment are often subjected to coupling effect and damage caused by corrosion and fatigue. This paper proposed a new assessment method to study corrosion fatigue life of steel structure, including the effect of cyclic loading and corrosion damage. Based on mechanical factors, the corrosion depth of structure under cyclic loading at different time intervals was defined by a mathematical model for corrosion damage. A finite element model was established to calculate structure damage. Finally, the cumulative damage could be obtained by Miner guidelines to assess the fatigue life. Comparing traditional methods, the coupling effect of corrosion and fatigue were taken into account by this new method. According to this new method, the results showed that the calculated corrosion rate was faster, and the corrosion fatigue life shorter. Corrosion fatigue could cause more damage to structure than was expected. Furthermore, this method was convenient and practical for assessing/estimating the corrosion fatigue life of normal steel structure
    • 

    corecore